
String Transformation Using Top K Pruning
Algorithm

Ms. Swapnali S. Maske1, Mr. Prashant Jawalkar2

1ME student,Department of computer engineering,
 JSPM’s BSIOTR, wagholi, Pune.

2Assistant professor, Department of computer engineering,
JSPM’s BSIOTR, wagholi, Pune.

Abstract-In this paper method is developed to solve two
problems, spelling error correction and query reformulation
of queries in web search. A search session in web search is
comprised of a sequence of queries from the same user within
a short time period. Many of search sessions in our data
consist of misspelled queries and their corrections. We
employed heuristics to automatically mine training pairs from
search session data. Efficiency is vital for this task due to
dictionary is extremely large and the response time must be
very short. Proposed approach is very accurate and efficient
improving upon existing methods in terms of accuracy and
efficiency in different settings. Top k pruining algorithm is
used to generate most likely spelling error correction.

1. INTRODUCTION

In String transformation, given an input string and set of
operators we transform the input string into most likely
output strings. Operator is nothing but transformation rule
that defines replacement of input string with output string.
Likelihood represents similarity, association and relevance
between input and output strings. Precisely goal of this
work is improving efficiency and accuracy. Work is
divided into two tasks spelling error correction and query
reformulation. In spelling error correction there are two
steps candidate generation and candidate selection. In
candidate generation most likely corrections for misspelled
words are given and in query reformulation. In previous
work on string transformation efficiency is not an important
factor taken into consideration. In contrast, our work in this
paper develops a model for string transformation which can
achieve both high accuracy and efficiency. There are three
fundamental problems with string transformation: (1) how
to define a model which can achieve both high accuracy
and efficiency, (2) how to accurately and efficiently train
the model from training instances, (3) how to efficiently
generate the top k output strings given the input string, with
or without using a dictionary. The log linear model gives
conditional probability distribution of an output string and a
rule set given an input string. The learning estimates
maximum likelihood. Thus, the model is trained toward the
objective of generating strings with the largest likelihood
given input strings. Top k pruining algorithm efficiently
generates top k candidates. The experimental results on the
two problems demonstrate that our method consistently and
significantly performs better than the baseline methods of
generative model and logistic regression model in terms of
accuracy and efficiency.

1.1 Model for string transformation
String transformation model is proposed as shown in
following figure in which there are three main phases:
learning phase, generation phase and selection phase.
1.1.1 Learning Phase

Rule set is primary focus on learning phase. Here
weights are estimated for transformation rules with
user input. The type of transformation rules are
stemming, prefix, suffix and acronym. Our model is
designed for both accurate and efficient string
transformation, with transformation rules and weight.
Model: Model consist of rules and weights. A rule is
represented as α→β which denotes an operation of
replacing substring α in the input string with substring
β, where α,βϵ{s/s= t, s=^t, s=t$, or s=^t$}Where ^ and
$ are the start and end symbols respectively.
Training Model: Training data is given as a set of pairs
T=sij,sojj=1N, Where sij is input string and soj is
output string. We define likelihood on the basis of
conditional probability of output strings given input
strings.

1.1.2 Generation Phase
In this phase we generate most likely k output strings.

1.1.3 Selection Phase
In selection phase candidates are selected which
having highest weights.

1.1.4 Spelling error correction
Spelling error correction is divided into two tasks:
candidate generation and candidate selection. Brill and
moore previously developed generative model but in
this project we are using discriminative model which
can work better than generative model because it is
trained for enhancing accuracy. In this paper, we work
on candidate generation, which can be applied to
spelling error Correction for both high and low
frequency words.

1.1.5 Query Reformulation
Query reformulation rewrites the original query with
its similar queries and enhances the effectiveness of
search. The weights of the transformation rules are
calculated based on log likelihood ratio. Query
reformulation in search is aimed at dealing with the
term mismatch problem. For example, if the query is
NY Times and the document only contains New York
Times, then the query and document do not match well
and the document will not be ranked high. Query
reformulation transforms NY Times to New York
Times and makes matching between the query and
document.

Swapnali S. Maske et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4409-4411

www.ijcsit.com 4409

Fig 1. String transformation model

2. METHODOLOGY

In this paper we employ top k pruning technique to achieve
efficiency in string transformation. It eliminates unlikely
paths thus improve efficiency. Steps for top k pruning
algorithm are given as follows:

Input: rule index Ir, input string s, candidate
number k

Output: top k output strings in Stopk
Begin
Find all rules applicable to S from Ir with Aho

corasic algorithm
Minscore=-1
Qpath=Stopk
Add (1,^,0) into Qpath
While Qpath is not empty do
Pickup a path (pos,string,score) from Qpath with

heuristics
If score _ minscore then
Continue If pos== |Sj|AND string reaches $ then
If |Sk| <= k then
Remove candidate with minimum score from

Stopk
Add candidate (string, score) into Stopk
Update minscore with minimum minimum score

in Stopk
Foreach next substring c at pos do
α→β= corresponding rule of c
pos=pos+|α|
string=string+ β
score=score+ λα→β
Add(pos,string,score) into Qpath
If(pos,string,score)in Qpath then
Drop the path with similar score
Return Sk

In this algorithm a triple (pos, string, score) is used to
denote each path generated corresponding to the position,
the content and the score. Qpath is a priority queue. It
stores paths, and is initialized with path (1, ^, 0). Stopk is a
set that stores k candidates and scores (string, score). The

algorithm picks up one path from Qpath each time and
expands the path from its current position. Path is popped
up from the priority queue when one path is processed. The
algorithm uses the top k pruning strategy to eliminate
unlikely paths and improve efficiency. If the score is
smaller than the minscore of the top k list Stopk, then the
path is discarded. The path with larger score is kept.
Advantages:
The algorithm uses top k pruning strategy to eliminate
unlikely paths thus improves efficiency.

3. RESULTS AND DISCUSSION
To improve efficiency and accuracy is goal of this system.
The system we developed in this study is evaluated using
the following three metrics.
3.1.1 Accuracy

The number of correct outputs generated by the system
divided by the total number of queries in the test set.
AccuracyTopN(N=1,5,10,25,100)=Number of
answers whose answer is in TopN/number of total
samples

3.1.2 Precision
The number of correct spelling corrections for
misspelled Queries generated by the system divided by
the total number of corrections generated by the
system.
Precision= Number of valid correction/(Number of
valid correction + number of bad correction)

3.1.3 Recall
The number of correct spelling corrections for
misspelled queries generated by the system divided by
the total number of misspelled queries in the test set.
Recall= Number of valid correction/(Number of valid
correction +Number of no correction + number of bad
correction).

Following figure shows the results of accuracy and
efficiency compared with the default setting. Default
settings given as: 973,902 words in the dictionary, 10,597
rules for correction, and up to two rules used in one
transformation. We made use of 100,000 word pairs mined
from query sessions for training, and 10,000 word pairs for
testing.

Fig. 2. Accuracy comparison between baselines and our

method with Default settings.

Swapnali S. Maske et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4409-4411

www.ijcsit.com 4410

The experiental results in Fig. 2. shows that our method
always performs better compared with the baselines. As k
increases the performance of logistic becomes saturated,
because the method allows the use of one rule each time.
We observe that there are many word pairs in the data that
need to be transformed with multiple rules. We compared
three methods by using one rule. Our method works better
than the baselines, especially when k is small. The
experimental results in Fig.3. shows that running time of
our method is remarkably less than generative and logistic
method. So we can conclude that our method works
efficiently with top k pruning strategy.

Fig.3. EEfficiency comparison between baselines and our

method with Default settings.

4. CONCLUSION
In this paper we have proposed a new statistical method for
string transformation. This method is unique in its model,
learning algorithm and string transformation algorithm.
Two specific applications are addressed with this method
namely spelling error correction and query reformulation in
web search. This paper focuses on accuracy and efficiency
of string transformation. This method is particularly useful
when the problem occurs on a large scale.

REFERENCES
[1] Ziqi Wang, Gu Xu, Hang Li, and Ming Zhang, “A Probabilistic

Approach to String Transformation”, in IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO.
5, pp. 1063-1075.

[2] M. Li, Y. Zhang, M. Zhu, and M. Zhou, “Exploring distributional
similarity based models for query spelling correction” ,in Proc. 21st
Int. Conf. Computational Linguistics and the 44th Annu. Meeting
Association for Computational Linguistics, Morristown, NJ, USA,
2006, pp. 10251032.

[3] H. Duan and B.-J. P. Hsu, “Online spelling correction for query
completion” , in Proc. 20th Int. Conf. World Wide Web, New York,
NY, USA, 2011, pp. 117126.

[4] J. Guo, G. Xu, H. Li, and X. Cheng, “A unified and discriminative
model for query refinement” , in Proc. 31st Annu. Int. ACM SIGIR
Conf. Research Development Information Retrieval, New York, NY,
USA, 2008, pp. 379386.

[5] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained gram-based
indexing for efficient approximate string search” , in Proc. 2009
IEEE Int. Conf. Data Engineering, Washington, DC, USA, pp. 604
615.

[6] N. Okazaki, Y. Tsuruoka, S. Ananiadou, and J. Tsujii, “A
discriminative candidate generator for string transformations” , in
Proc. Conf. Empirical Methods Natural Language Processing,
Morristown, NJ, USA, 2008, pp. 447456.

[7] E. Brill and R. C. Moore, “An improved error model for noisy
channel spelling correction”,in Proc. 38th Annual Meeting
Association for Computational Linguistics, Morristown, NJ, USA,
2000, pp. 286293.

[8] M. Dreyer, J. R. Smith, and J. Eisner, “Latent-variable modeling of
string transductions with finite-state methods” ,in Proc. Conf.
Empirical Methods Natural Language Processing, Stroudsburg, PA,
USA, 2008, pp. 10801089.

[9] Arasu, S. Chaudhuri, and R. Kaushik, “Learning string
transformations from examples”, Proc. VLDB Endow., vol. 2, pp.
514 525, August 2009.

[10] S. Tejada, C. A. Knoblock, and S. Minton,“Learning domain
independent string transformation weights for high accuracy object
identification”, in Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining,
ser. KDD 02. New York, NY, USA: ACM, 2002, pp. 350359.

[11] M. Hadjieleftheriou and C. Li, “Efficient approximate search on
string collections” , Proc. VLDB Endow., vol. 2, pp. 16601661,
August 2009.

[12] C. Li, B. Wang, and X. Yang, “Vgram: improving performance of
approximate queries on string collections using variable-length
grams” , in Proceedings of the 33rd international conference on Very
large data bases, ser. VLDB 07. VLDB Endowment, 2007, pp.
303314.

[13] X. Yang, B. Wang, and C. Li, “Cost-based variable-length-gram
selection for string collections to support approximate queries
efficiently” , in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, ser. SIGMOD 08.
New York, NY, USA: ACM, 2008, pp. 353364.

[14] A. R. Golding and D. Roth, “A winnow-based approach to
contextsensitive spelling correction”, Mach. Learn., vol. 34,
pp.107130, February 1999.

Swapnali S. Maske et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4409-4411

www.ijcsit.com 4411

